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In the data envelopment analysis context, problems related to discrimination between efficient 

and inefficient decision-making units often arise, particularly if there are a relatively large 

number of variables with respect to observations. This paper presents a comparison of two 

discrimination-improving methods published in the literature that do not require additional 

preferential information; principal component analysis applied to data envelopment analysis 

(PCA-DEA) and variable reduction based on partial covariance (VR). A simulation based 

approach was used to generalize the comparison as to which methodology was preferable under 

which conditions. Performance criteria were based on the percentage of observations incorrectly 

classified; efficient decision-making units mistakenly defined as inefficient and inefficient units 

defined as efficient. According to the simulation results, a trade-off was observed with both 

methods improving discrimination by reducing the probability of the latter error at the expense of 

a small increase in the probability of the former error. The comparison of the two methodologies 

showed that PCA-DEA provides a more powerful discrimination tool than VR with consistently 

more accurate results when the curse of dimensionality exists. Guidelines for the PCA-DEA user 

are presented based on a rule-of-thumb that aims to minimize both types of error. 
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The aim of this research is to compare two methodologies suggested in the literature as potential 

paths for improving the discriminatory power within data envelopment analysis (DEA) without 

requiring additional preferential information, namely principal component analysis combined 

with DEA (PCA-DEA) and variable reduction (VR) based on a partial covariance analysis. A 

secondary aim is to determine the most effective way of implementing the preferable framework. 

Lack of discrimination often defined as the curse of dimensionality, means that a large number of 

DMU’s are incorrectly classified as efficient due to overestimation. Adler and Golany (2001, 

2002) suggested using principal components, a methodology that evaluates uncorrelated linear 

combinations of original inputs and outputs, to improve discrimination in DEA with minimal loss 

of information. This approach assumes that separation of variables representing similar themes, 

such as quality or environmental measures, and the removal of principal components with little or 

no explanatory power, will aid in the correct categorization of efficient and inefficient decision-

making units (DMU’s). Jenkins and Anderson (2003) subsequently suggested a different 

statistical methodology in order to identify complete variables that could be omitted from the 

analysis whilst minimizing information reduction. They concluded that omitting even highly 

correlated variables could have a major influence on the computed efficiency scores, as argued in 

Dyson et al. (2001), hence an analysis of simple correlation is insufficient in choosing the correct 

variables to be removed. Consequently, Jenkins and Anderson (2003) promulgate the use of 

partial covariance analysis to choose a subset of variables that provide the majority of 

information contained within the original data matrices.  

 

While Adler and Golany (2001, 2002) and Jenkins and Anderson (2003) applied their methods to 

datasets published in the DEA literature, this study uses a simulation technique to generalize the 

comparison between the two approaches. A Monte Carlo simulation is used to generate a large 

number of DMU’s, based on various production functions, inefficiency distributions, correlation 

between variables and sample sizes. In addition, to ensure that the conclusions are as general as 

possible, various forms of misspecification of the DEA models are also analyzed. The results of 

the various DEA, PCA-DEA and VR approaches are compared to the ‘true’ efficiency scores. 

Two potentially incorrect predictions of efficiency are designated, namely efficient decision-

making units defined as inefficient (Error type I) and inefficient DMU’s defined as efficient 

(Error type II). Furthermore, a rule-of-thumb named the ‘optimal index’ is introduced, which 
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defines the percentage of retained information providing the greatest possible accuracy of the 

PCA-DEA model. It is shown that the optimal index is necessary for effective application of the 

aforementioned method in practice. To further test the models’ capabilities, coverage 

probabilities of the confidence intervals for DEA, PCA-DEA and VR radial efficiency estimators 

were evaluated using Simar and Wilson’s bootstrapping methodology (1998, 2000). The results 

further demonstrate the improvements that occur when applying PCA-DEA to estimate the 

efficiency score parameter.  

 

The paper is organized as follows. Section 2 presents various DEA linear programs, the two 

discrimination-improving models within the DEA context and the bootstrap method for 

confidence interval estimation. Section 3 describes a number of experimental designs and 

distributions that generate the simulated data subsequently utilized to compare the methods under 

discussion. Section 4 describes the results and section 5 the conclusions and recommendations for 

implementing the selected approach.  

 

2. The Data Envelopment Analysis Framework 

DEA is a non-parametric technique of frontier estimation that determines both the relative 

efficiency of a number of decision-making units (DMU’s) and targets for their improvement. 

DMU’s can represent any set of organizations or departments that perform fundamentally the 

same task with the same set of variables. DEA measures the relative efficiency of decision-

making units with multiple inputs and outputs and assumes neither a specific functional form for 

the production function nor the inefficiency distribution, in contrast to parametric statistical 

approaches. Problems related to discrimination arise, for example, when there are a relatively 

large number of variables as compared to DMU’s, which in extreme cases may cause the 

majority of observations to be defined as efficient. As shown through the use of simulation, this 

is generally due to a large number of type II errors (i.e. inefficient units incorrectly classified as 

efficient), which is a direct result of the weak assumptions of the DEA framework. One of the 

goals of this study is to determine the levels of two potentially incorrect predictions of efficiency 

that occur in the DEA environment, namely efficient decision-making units defined as inefficient 

(Error type I) and inefficient DMU’s defined as efficient (Error type II). Kneip et al. (1998) and 
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Simar and Wilson (2000) developed models to determine the statistical properties of the 

nonparametric estimators. In particular, they showed that the speed of convergence of DEA 

estimators relies on (1) the smoothness of the unknown frontier and (2) the number of inputs and 

outputs relative to the number of observations. If the number of variables is relatively large, 

estimators exhibit very low rates of convergence and the applied researcher will need a rather 

large quantity of data in order to avoid substantial variance and very wide confidence interval 

estimates. To avoid the curse of dimensionality, Simar and Wilson (2000) suggested that the 

number of observations ought to increase exponentially with the addition of variables, but general 

statements on the number of observations required to achieve a given level of mean-square error 

are not possible since the exact convergence of the nonparametric estimators depends on 

unknown smoothing constants. According to the Simar and Wilson bootstrap results, even the 

index case with one input and one output requires at least 25 observations, and preferably more 

than 100 for the confidence intervals of the efficiency estimator to be almost exact. Furthermore, 

Banker (1996), Simar and Wilson (2001) and Pastor et al. (2002) suggested statistical tests for 

measuring the relevance of inputs or outputs, as well as tests to consider potentially aggregating 

inputs or outputs. Unfortunately, large samples are generally not available in practice and 

researchers try to handle small multivariate datasets, hence the need for discrimination improving 

methodologies.  

 

In the simulation analysis, we begin with adaptations of the additive DEA, constant returns-to-

scale (CRS) case (Charnes et al. (1985)), which computes inefficiencies identified in both inputs 

and outputs simultaneously. The optimal solution of the linear programs is an efficiency score 

that measures the longest distance from the DMU being evaluated to the relative efficient 

production frontier. In other words, the objective function measures the maximum sum of 

absolute improvements measured as slacks, necessary for a DMU to be defined as relatively 

efficient. An observation is rated as relatively efficient if, and only if, there are no output 

shortfalls or resource wastage at the optimal solution. The additive linear program (LP) is 

particularly useful in our context because this formulation corresponds to the Pareto-Koopmans 

(mixed) definition of technical efficiency. It also possesses a translation invariance property3 

under VRS (Pastor, 1996) and data may be non-positive without the need for transformation. 

                                                 
3 An efficiency measure is independent of the linear translation of the input and output variables. 
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Another property that is generally considered crucial in performance analysis is units invariance.4 

Lovell and Pastor (1995) introduced a normalized, weighted, additive LP that contains both 

translation and units invariance properties under VRS, and units invariance only under CRS. 

Therefore, it was chosen for the present study in place of the standard, additive linear program. 

Normalized, weighted, additive DEA utilizes the same constraints as basic additive but replaces 

the objective function of the primal additive formulation with the maximum sum of slacks 

weighted by the reciprocal sample standard deviations of the appropriate variables. 

 

2.1 Principal Component Analysis - Data Envelopment Analysis 

The idea of combining DEA and PCA methodologies was developed independently by Ueda and 

Hoshiai (1997) and Adler and Golany (2001, 2002). In these papers it is suggested that the 

variables can be divided into groups, based on their logical composition with respect to the 

production process, and then replaced with principal components representing each group 

separately. Alternatively, PCA could be applied to the complete set of variables (inputs and/or 

outputs individually) in order to improve the discriminatory power of DEA by reducing the data 

to a few uncorrelated principal components, which generally describe 80-90% of the variance of 

the data. If most of the population variance can be attributed to the first few components, then 

they can replace the original variables without much loss of information. As stated in Johnson 

and Wichern (1982), let the random vector X=[X1,X2,…,Xp] (in our case the original inputs or 

outputs chosen to be aggregated) possess the covariance matrix V with eigenvalues 

η1≥η2≥…≥ηp≥0 and normalized eigenvectors l1,l2,…,lp. Consider the linear combinations, where 

the superscript t represents the transpose operator, as specified in equations (1). The new 

variables, commonly known as principal components, are weighted sums of the original data. 
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4 An efficiency measure is independent of the units in which the input and output variables are measured. 



 6

The principal components,  
21 pPCPCPC ,X,,XX … , are the uncorrelated linear combinations ranked 

by their variances in descending order. It should be noted that PCA-DEA is based on correlation 

rather than on covariance due to the different variable measurement units5. Principal components 

are computed based solely on the correlation matrix and their development does not require a 

multivariate normal assumption. The complete set of principal components is as large as the 

original set of variables. Lx is the matrix of all li whose dimensions drop from mxm to hxm, as 

PCs are dropped (Xpc becomes an h×n matrix). PCs can be used to replace either all the inputs 

(outputs) simultaneously or, alternatively, groups of variables with a common theme, such as a 

set of environmental or transportation variables, thus linear program (2) refers both to original 

data and PCs in order to develop a generalized program.  
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where subscript ‘o’ (‘pc’) is the index of original (principle component) variables; Xpc represents 

an mxn input matrix; Ypc an rxn output matrix; Xa and Ya input and output column vectors for 

DMUa respectively; λ a column n-vector of DMU weights; σ a column m-vector of input excess; 

s a column r-vector of output slack variables; wt is a vector consisting of reciprocals of the 

sample standard deviations of the relevant variables. An additional constraint 1=λte can be 

added to (2a) corresponding to the variable returns-to-scale (VRS) case (Banker et al. (1984)). 

(2b) is the dual version of (2a). As described in Adler and Golany (2002), by definition Vpc
t Xpc ≡ 

Vpc
t LxX where Vpc

t represents a row vector of dual variables. Therefore Vpc
 t Lx equals the weight 

of the ‘original’ X input matrix and the normalized, weighted, additive LP can be replaced by the 

                                                 
5 Performing PCA on a standardized data matrix has the same effect as performing the analysis on the correlation 
matrix. 
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algebraically equivalent linear program (2). The same is true for output matrix Y. The PCA-DEA 

formulation is exactly equivalent to the original linear program if and only if the PCs explain 

100% of the correlation in the original input and output matrices6. Following the normalized, 

weighted, additive DEA model, each variable is divided by the corresponding standard deviation, 

the correlation matrix of standardized inputs and PCs are calculated and finally linear programs 

(2) are used to derive efficiency scores.   

 

The translation invariance property is not crucial for PCA-DEA because geometrically PCs 

represent the selection of a new coordinate system obtained by rotating the original system with 

x1,…,xm as the coordinate axes (it is not the parallel translation of the coordinate system). 

Therefore, PCA-DEA may also be applied to the standard radial CRS and VRS DEA (Charnes et 

al. (1978) and Banker et al. (1984) respectively). The PCA-DEA formulation for the input 

oriented, CRS, radial linear program is presented in (3).  
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The disadvantage of PCA-DEA is that the data must be transformed and then, once results are 

obtained, it must be transformed back to the original form in order to interpret the results. In DEA 

the results obtained with respect to each DMU reflect its position within the "production 

possibility set" (PPS) relative to the efficient part of the boundary of the PPS. The imposition of 

weights restrictions in DEA will render parts of the efficient boundary of the PPS no longer 

efficient. Allen et al. (1997) showed that the interpretations of the inefficiency rating, the targets 

                                                 
6 Regular DEA-solvers are not suitable for PCA-DEA, therefore we suggest utilizing free PCA-DEA software for 
discrimination reduction purposes. (http://pluto.huji.ac.il/~msnic/PCADEA.htm) 
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and the efficient peers change under weights restrictions. Indeed, the targets and the efficient 

peers obtained could reflect a substantial change in the current mix of input-output levels of the 

inefficient DMU’s. A similar phenomena occurs under the PCA-DEA formulation (as a result of 

the free sign in PCA). However problems related to discrimination often arise and in extreme 

cases, the majority of DMU's may prove efficient, which means that there is a need for a trade-off 

between complete DEA information and a need to improve discrimination.  

 
2.2 Multivariate Statistical Approach for Variable Reduction  

Jenkins and Anderson (2003) introduced a systematic multivariate statistical approach to reduce 

the number of variables, omitting those providing the least information. The variables to be 

omitted are chosen based on a partial correlation technique, in which the variance of an input or 

output around its mean value indicates the importance of a specific variable. If the value is 

constant, the variable will be incapable of distinguishing one unit from another whereas a 

pronounced variation indicates an important influence. Jenkins and Anderson (2003) use partial 

correlation as a measure of information, instead of a simple correlation matrix (Friedman and 

Sinuany-Stern, 1997). However, partial correlation is based on the assumptions that the data is 

drawn from an approximately normal distribution and the conditional variance is homoscedastic. 

DEA is a non-parametric approach and it is unclear, particularly with a small dataset, whether 

such conditions exist. 

 

VR consists of the following steps: 

i. Normalize the data in order to obtain zero mean and unit variance ensuring 

that all the variables are treated equally. 

ii. Divide m variables (inputs in our case) into two sets: i=1,…,p representing the 

variables to be omitted, and i=p+1,…,m the variables to be retained because they 

contain most of the information for all m variables. 

iii. Compute the partial variance-covariance matrix V11.2=V11-V12V22
-1V21, where 

V11 represents the variance-covariance matrix of variables i=1,…,p V22 represents 

the variance-covariance matrix of variables i=p+1,…,m, V12 (V21) represents the 

covariance matrix of variables i=1,…,p and i=p+1,…,m (and vice versa).  

iv. Calculate the trace of V11.2 which represents the size of the remaining variance 

of variables i=1,…,p after conditioning on the retained variables i=p+1,…,m. 
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v. Repeat the procedure of labeling of the i=1,…,m variables under different 

partitions in order to achieve minimum variance in the first p variables. That is, 

the number of omitted variables depends on the level of the remaining variance of 

variables that a user must specify exogenously. 

vi. Apply DEA to the subset of variables using their original measurements. 

 

Jenkins and Anderson (2003) applied VR to a number of published datasets and discussed the 

influence of the omission of variables that contain little additional information on the computed 

efficiency scores. They demonstrate that DEA results can vary greatly according to the variables 

chosen, despite the scientific or managerial justification for the inclusion or omission thereof. 

Hence, they advocate the use of partial covariance analysis in order to enable an objective 

selection of variables based on information to be considered in the subsequent analysis, leading to 

a more complete categorization of observations. It could be argued that VR is a private case of 

the PCA-DEA formulation because by removing principal components, dependent on the weights 

chosen, one or more variables may be dropped in their entirety.  

 

In the following sections we will examine the performance of DEA, PCA-DEA and VR models, 

to determine under which circumstances each approach proves more accurate in terms of Error 

types I and II, in an attempt to define an optimal implementation path. Furthermore, in order to 

compare radial DEA, PCA-DEA and VR models, in terms of the accuracy of the efficiency 

measure, we analyze the coverage probabilities of the confidence intervals.  

 

2.3 Confidence Intervals Estimation 

Since efficiency is measured relative to an estimate of the frontier, estimates of DEA efficiency 

are subject to uncertainty due to sampling variation. Simar and Wilson (1998, 2000) proposed a 

bootstrapping methodology for analyzing the sampling variation and estimating confidence 

intervals of the radial DEA measures (θ̂ ). This research utilizes the homogeneity bootstrapping 

approach, presenting the input-oriented case. Simar and Wilson (1998) assumed that some 

underlying data generating process generates data points (x, y) from the production possibility 
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set7, observations are independent and identically distributed and the dataset is randomly 

sampled.  

 

Bootstrapping occurs by repeatedly updating inputs x* as shown in equation (4) by applying 

DEA and comparing each DMU to the new reference set (x*, y*). 

 

yyxx == *,/ˆ* *θθ                               (4) 

 

where values *θ  are drawn from a smoothed kernel estimate of the marginal density of the 

original estimates of the relative efficiency (θ̂ ). The conditional density has bounded support 

over the interval (0,1] and is right-discontinuous at 1, hence naive bootstrapping (sampling with 

replacement) leads to inconsistent estimates. To address the boundary problem, Simar and 

Wilson (1998) draw pseudo data using the reflection method. The idea behind the bootstrap is to 

approximate the unknown distribution of θθ −ˆ , the difference between the original efficiency 

estimates and ‘true’ efficiency, through the distribution of θθ ˆˆ* −b , the difference between the 

bootstrapped efficiency estimates and the original efficiency estimator, conditioned on the 

original data. From the empirical bootstrap distribution of the pseudo estimates, values for 

margins of error ( aâ and ab̂ ) can be computed as presented in equation (5). 
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equation (6) and the bootstrap bias estimate for the original estimator is presented in equation (7), 

where B represents the number of bootstrap replications. 
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7 The data generation procedure assumes continuous density of inefficiency, without mass on the boundary. 
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The bias estimates highlight the inaccuracies caused by using a sample set of DMU’s instead of 

the entire population, as frequently occurs in practice. This procedure was applied to several 

fixed points (x0, y0) randomly sampled from the simulated data. The results of the bootstrapping 

procedure appear in Tables 3 and 4 of the results section, after the experimental design is 

presented. The results clearly identify the reduced bias and increased confidence interval 

coverage in the discrimination improving models, with PCA-DEA proving to be systematically 

more effective then the VR method.  

 

3. Design of the Experiment 

The Monte Carlo simulation approach is used in this study to compare the accuracy of the 

different models. The ‘true’ efficiency will be calculated and then compared to the score derived 

from basic DEA and the alternative models. This is the main advantage of using simulated data, 

as the ‘true’ values are known, which does not occur with a dataset collected from the real world. 

Two very different experimental designs were programmed, the first school of thought is based 

on Banker et al. (1993), Smith (1997) and Bardhan et al. (1998), in which inefficiencies are 

independently drawn for several inputs, there are “clouds” of data points surrounding the 

efficiency envelope (i.e. relatively small variance of inefficiency) and approximately 25% of the 

decision-making units of the entire population are absolute efficient (lie on the frontier). The 

second school, based on Kneip et al. (1998) and Simar and Wilson (1998, 2000, 2001), assume 

single output inefficiency and that no DMU is strictly efficient. Basic results from each of the 

experimental designs reach the same general conclusions. 

 

Initially, 10,000 positive observations of X were randomly generated from a normal distribution 

with mean 10 and variance 1. The correlation of 0.4 or 0.8 (low and high levels) was applied 

using the Cholesky factorization in order to analyze the effects of correlation between input 

variables and emphasize empirical relevance, since reasonably high correlation is often found in 

real-world datasets. A single output and four inputs (r = 1, m = 4) were chosen for the 
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experiment. The single output is used for simplicity and in order to permit the use of standard 

production functions to compute the output values. We assume homogeneity, namely that all 

DMU’s operate under the same conditions, using the same production process, hence the same 

measures of efficiency apply equally to all DMU’s (Haas and Murphy (2003)). Table 1 presents 

the Cobb-Douglas production functions used initially because they permit interaction among 

factor inputs and are relatively easy to manipulate mathematically.  

 

 

It should be noted that the Cobb-Douglas function is restrictive in the properties it imposes upon 

the production structure, including a fixed returns-to-scale assumption and an elasticity of 

substitution equal to unity. In order to generalize the results of the experiment, a more flexible, 

homothetic, translog production function (Read and Thanassoulis (2000)) was also used to 

generate simulated data, as shown in equation (8). In this manner, we attempt to ensure that the 

conclusions drawn are not based on the production function assumed.    
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The next step in producing a simulated data set is to introduce inefficiencies. We first describe 

the steps taken under the first experimental design and then those of the second data generation 

procedure. 

 

3.1 Data Generation Procedure I  

While the output values are calculated from the production function, the input values are 

calculated using the expression i
i
τex , where τi represents a non-negative, input-specific 

inefficiency (Bardhan et al. (1998)). Inefficiencies τi for each input are independently drawn from 

an exponential distribution with mean of 0.2231 or half normal distribution HN (0, 0.2796). 

Independence of input inefficiencies reflects specialization. In line with several simulation 

Table 1 here 
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studies undertaken in the literature, such as Banker et al. (1988), approximately one quarter of the 

entire population of 10,000 firms were defined as 100% technically efficient, hence 25% of the 

randomly sampled observations from the entire population lie on the efficiency frontier, namely 

τi=0. This results in the same mean inefficiency of 1.15 (or mean efficiency equivalent to 0.87) of 

a standard DEA model in the aggregate and are consistent with the empirical estimates reported 

in previous DEA studies (Banker et al. (1993)). The exponential and half-normal assumptions 

reflect the belief that larger values of inefficiency are less likely and that the relatively small 

variances of inefficiency are highly likely, causing a cloud of DMU’s near the frontier.  

 

3.2 Data Generation Procedure II  

Along the lines of Simar and Wilson (2000), no probability mass is assumed along the frontier 

and a single inefficiency, τa, was simulated for each DMUa, independently drawn from an 

inefficiency distribution e.g. τa~HN(0, 1). Subsequently, the output values were calculated using 

function (9), where e-τ
  represents a bound on the efficiency of [0,1]. 

 

 y = x1
0.25 x2

0.25 x3
0.25 x4

0.25 e-τ        (9) 

 

In this simulation design, a single inefficiency parameter was added on the output side, which 

permits the use of an output maximizing DEA. Under a VRS assumption, the reciprocal of an 

output-oriented radial estimator should be calculated. Alternatively, a radial estimation procedure 

under CRS may be applied which either minimizes inputs or maximizes outputs, since they 

produce the same efficiency score. In DEA we are searching for relative efficiency and by 

definition, at least one DMU must be defined as relatively efficient. Given that all DMU’s now 

possess some level of inefficiency, we assume that DMU’s with a simulated e-τ greater than 0.9 

should be deemed ‘relatively efficient’. This value was gradually increased to 0.99 in order to 

ensure that the general results presented in Section 4 are independent of the value assumed. These 

assumptions were also tested for various forms of the inefficiency distributions (exp(0.2231) and 

HN(0,0.2796)) using radial DEA. The percentage of relatively efficient units in the original 

population varied based on the inefficiency distribution and cut-off assumption ranging from 

38% under the exp(0.2231) distribution with e-τ > 0.9 to 0.9% under the HN(0,1) distribution with 
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e-τ > 0.99. However, we observed exactly the same general tendencies as the results of the first 

experimental design. 

 

In all cases, after simulating an entire population of 10,000 DMU observations the vectors were 

divided into smaller, more realistic subsets (sample sizes are 8, 10, 16, 20 and 25 observations). It 

should be noticed that the correlation of 0.4 or 0.8 between variables holds for the entire ideal 

population of 10,000 DMU’s, i.e. before the introduction of inefficiencies. Inefficiencies τi, for 

each input are independently drawn after the Cholesky factorization, therefore the correlation 

within the simulated population will change, as it will within the sample subsets subsequently 

drawn. As a result, we may only refer to low and high correlation and the ‘true’ number of 

relatively efficient observations in each subset will vary too. 

 

In addition, various forms of misspecification were purposely introduced (see for example Smith 

(1997) and Galagedera and Silvapulle (2003)), namely one or two of the inputs were omitted, an 

irrelevant input or two were incorporated into the model and the incorrect assumption as to the 

type of returns-to-scale was made. Performance criteria based on the percentage of observations 

that predict the efficiency incorrectly were used to compare the findings obtained by the models. 

The criteria included the number of efficient units defined as inefficient (Error type I) and the 

number of inefficient units defined as efficient (Error type II). It should be noted that error type II 

is more likely to occur because there are more inefficient simulated DMU’s by definition. The 

coverage probabilities of the confidence intervals for bootstrapped DEA, PCA-DEA and VR 

radial efficiency scores were also estimated. 

 

4. Results  

The plots presented in this section illustrate the general findings of the simulation analyses. The 

title of each scatter plot includes information on the simulated production function, including the 

level of covariance between inputs in the entire ideal population, inefficiency distribution, sample 

size and returns-to-scale assumption. The value of the horizontal axis is the average percentage of 

Error type I in each case and the value of the vertical axis is the average percentage of Error type 

II. For example, for the entire simulated population of 10,000 observations and a sub-sample size 
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of 8 decision-making units, the average percentage error is obtained from 10,000/8 = 1,250 

samples. Since the number of inefficient observations in the entire population is at least three-fold 

larger than the efficient units by definition, the probability of Error type I is significantly less than 

the probability of Error type II, therefore the axes’ lengths are different. The left point of the 

pictures coincide with the standard DEA program, without loss of information and then, each 

point to the right corresponds to the situation in which more and more information is reduced. 

The curves show convex trend lines as information is removed from 100% down to 74% in 2-

percent steps. The step was chosen arbitrarily for presentation purposes. The percentage of 

retained information is the common parameter for both methods and determines the number of 

PCs or variables retained in the subsequent DEA. In other words, at each point, the program set 

the number of PCs or variables retained such that the percentage of information remaining was at 

least equal to the level set by the program. The slopes of the curves are interpreted as the rate of 

error reduction, hence the steeper the slope, the more effective the approach. The gap between the 

curves is interpreted as the difference between the methods, as the comparison between the 

results at specific points is not informative simply because the removal of an entire variable has a 

different effect to dropping a single principal component.  

 

Several figures have been chosen for illustrative purposes with the aim of demonstrating general 

results and conclusions. Figure 1 presents a Cobb-Douglas production function with equal 

weights and low covariance over all inputs tested on several sample sizes. Figure 2 presents VRS 

Cobb-Douglas functions, demonstrating the problems that arise when applying DEA with the 

incorrect returns-to-scale assumption. Figure 3 demonstrates the results of a translog based 

production function, which clearly shows the same general conclusions over different sample 

sizes. Figure 4 demonstrates the effects of data omission with respect to a relatively important 

and unimportant variable and Figure 5 presents the effects of omission and inclusion of an 

extraneous input in comparison to the correct and complete analysis. Figure 6 presents the 

performance of the PCA-DEA and VR methods based on radial CRS DEA utilizing the second 

experimental design described in Section 3.2. The likelihood of error type I in this experimental 

design is substantially lower than the results presented in Figure 1 based on the previous 

experimental assumptions, hence the values on the x-axis are much smaller. Given the 
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assumption that there is no data cloud surrounding the efficient frontier, the trade-off between the 

two error types appears considerably healthier than previously supposed. 

 

4.1 Level of Information to Retain 

One of our initial goals was to find a rule-of-thumb or ‘optimal index’ for the preferable approach 

(PCA-DEA), specifying the percentage of retained information that provides the closest 

proximity to the efficiency classification. In general, improving discrimination comes at a price, 

since it increases the probability of Error type I. It was found that in some cases, when the value 

of the optimal index dropped below a certain level, the probability of both types of error 

increased (Figure 1), therefore it may be helpful to provide guidelines concerning the optimal 

choice strategy. The rule-of-thumb was determined on each graph in the following manner: 

1) Search for a point on the PCA-DEA curve where Error type II reaches its 

minimum. 

2) If there are several such points, choose the one where Error type I is 

minimized.  

The solution to step 2 represents the optimum index value per specific simulated case. The 

general, optimal index will be based on accumulated index values in order to provide a 

reasonable rule-of-thumb. The simulation study suggests that the optimal index for the CRS 

(VRS) case ought to be equal to 80 (76)%. In other words, the data may be reduced to a few 

uncorrelated principal components that describe at least 80 (76)% of the variance of the original 

data. This value is independent of the level of correlation between variables, of the distribution of 

inefficiencies or of the type of production function.  

 

4.2 Results Drawing on Data Generation Procedure I 

 

Figure 1 demonstrates clearly three basic results. First, the figure shows that PCA-DEA is 

strongly preferable to VR for all sample sizes and for all levels of information retained. PCA-

DEA reduces type II error faster and creates type I error more slowly than the VR methodology. 

Furthermore, it should be noted that in terms of errors, there is no significant difference between 

Figure 1 here 
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variable reduction according to partial correlation as a measure of information and simple 

correlation. Second, the rate of discrimination improvement by PCA-DEA is highest for smaller 

samples. The higher the ratio of variables to observations, the lower the level of discrimination 

and the more likely the basic DEA will yield type II error, defined as over-estimation of 

efficiency in Smith (1997). Third, it has become clear that there are trade-offs between the two 

types of error and most importantly, given the correct variables8 and returns-to-scale assumption, 

the basic DEA makes no type I error i.e. no efficient DMU is ever classified incorrectly. This is 

the reason that all lines presented in Figure 1 begin on the y-axis. Unfortunately, this is at the 

expense of type II error whereby inefficient DMU’s are incorrectly defined as efficient. The value 

of the different error types is clearly context dependent but in cases where 50% or more of the 

DMU’s are defined as efficient, error choice ought to be considered. 

 

4.2.1 Returns-to-scale Error 

 

In the top graph of Figure 2, the influence of an incorrect CRS assumption on Error type I is 

demonstrated, particularly for highly correlated variables. This is the first instance of type I error 

being produced by the basic DEA identified by the fact that the left most point (100) represents 

the results of the weighted additive DEA and alternative models with complete information. On 

average, greater type I error occurs with high correlation between inputs because of the similarity 

between DMU’s. The CRS assumption has the effect of increasing the feasible region and 

enveloping the data less tightly than under the VRS assumption. Therefore, if variables are highly 

correlated and a CRS assumption is incorrectly assumed, an efficient DMU at the extreme points 

may be classified as inefficient (Error type I). It should be noted that high correlation causes the 

opposite effect with respect to Error type II, slightly reducing this error. Pedraja-Chaparro et al. 

(1999) indeed reach the conclusion that merely counting variables in a DEA is an inadequate 

measure of the dimensionality of the model. In addition, the user needs an index of 

                                                 
8 All variables are relevant and measured accurately.  

 

Figure 2 here 
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dimensionality that takes account of the intercorrelation among variables. The results of the 

simulation demonstrate that both PCA-DEA and VR models improve the problem of 

dimensionality by reducing the number of variables in the DEA analysis, which as a result cause 

the number of DMU’s lying on the efficiency frontier to decline, the probability of type II error to 

decrease and the probability of type I error to increase. PCA-DEA is preferable to VR, 

particularly for relatively low correlation between variables9 when this type of misspecification 

occurs (incorrect CRS assumption). Finally, when VRS is correctly assumed, the problem of 

discrimination is even more distinct causing a relatively large Error type II percentage, 

irrespective of the correlation between inputs. This can be seen in the bottom graph of Figure 2, 

where the left most point represents the results of the weighted additive DEA and PCA-DEA and 

VR with complete information, demonstrating average type II error of more than 40%.  

 

Figure 3 demonstrates the reduction in type II error as a function of sample size for the translog 

production function. The top graph in Figure 3 demonstrates the influence of an incorrect CRS 

assumption on Error type I, particularly for relatively large samples (16 observations) and the 

lower graph points out the serious discrimination problem that occurs when VRS are correctly 

assumed for relatively small samples (8 observations). In the top graph, an incorrect CRS 

assumption causes an undesirable increase in Error type I for relatively large samples, since the 

number of efficient observations in the larger sample is greater by definition, therefore the 

possibility of type I error (efficient units defined as inefficient) occuring is greater. The 

introduction of the VRS constraint in the bottom graph of Figure 3 demonstrates the problem of 

sparsity bias for relatively small samples, when a DMU consuming the lowest level of a 

particular input is deemed efficient, simply because there are no peers with which to compare 

them (Smith (1997) and Pedraja-Chaparro et al. (1999)). In the bottom graph, Type II error is 

substantial in the standard DEA, around 40% for very small samples (8 DMU’s) and around 20% 

for larger sets (16 DMU’s), but as we reduce the unnecessary principal components, the same 

error reduction appears as previously demonstrated with the Cobb-Douglas production functions. 

 

                                                 
9 In the extreme case where the data is uncorrelated we can apply neither PCA nor VR, therefore we discuss only 
‘low correlation between the variables’.  
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The comparison of the two methodologies carried out in the study identifies PCA-DEA as a more 

powerful discrimination tool than VR. Furthermore, PCA-DEA results were found to be closer to 

the ‘true’ simulated efficiencies than those of VR and proved easier to navigate because the data 

reduction did not occur in large jumps or changes, as occurs when an entire variable is removed 

from the analysis, particularly when samples are small and original variables show low 

correlation. In other cases, PCA-DEA and VR results were similar, although PCA-DEA was 

never found to produce less accurate results. At the same time, neither of the tested techniques 

ensured a complete ranking, rather a significant reduction in the set of efficient units, in other 

words a reduction in type II error of the original DEA. The combination of variable reduction 

followed by use of the PCA-DEA model proved unsuccessful due to an excessive loss of 

information. 

 

4.2.2 Levels of Error and Variable Choice 

Since a process of discrimination improvement within DEA begins from the common point 

representing the original DEA model result, it may be helpful to determine the strengths and 

limitations of the original, weighted, additive LP, as well as PCA-DEA. For this purpose various 

scenarios were developed altering the simulation and DEA parameters. Table 2 summarizes the 

intervals of error of the original DEA and PCA-DEA according to the optimal index, when 

original inputs are highly correlated, the number of decision-making units relative to the number 

of variables is small, i.e. 1 output, 4 inputs and 8 DMU’s10, under various forms of the production 

function (Table 1) and misspecification, namely (a) one of the inputs was omitted from the 

model, (b) an irrelevant input was incorporated into the model, (c) an incorrect assumption of 

returns-to-scale was made and (d) an irrelevant input was not included in the production process 

computation of output, despite a correlation with the other inputs. Table 2 presents the trade-off 

between the two types of error, the influence of returns-to-scale assumptions on the results and 

robustness of PCA-DEA. The same tendencies were found when two inputs were omitted from 

the model, two irrelevant inputs were incorporated into the model and the translog production 

function was assumed. 

                                                 
10 We chose purposefully extreme examples in order to demonstrate the effect of information reduction but we also 
note that DEA has been applied to real databases with very small sample sets and substantial numbers of variables as 
published in the literature e.g. Hokkanen and Salminen (1997a, b), Friedman and Sinuany-Stern (1997). 



 20

 

For example, the lower bound of cells (1) and (2) is determined by simulated CRS Cobb-Douglas 

production functions y = x1
0.25 x2

0.25 x3
0.25 x4

0.25 with a half normal inefficiency distribution and the 

upper bound is determined by simulated VRS Cobb-Douglas production functions 

y=x1
0.35x2

0.2x3
0.1x4

0.05 with an exponential inefficiency distribution and incorrect returns-to-scale 

assumptions in the subsequent DEA. The lower bound of cell (4) is determined by simulated 

Cobb-Douglas production functions with a half normal inefficiency distribution (HN (0,0.2796)) 

and the upper bound is determined by an exponential inefficiency distribution (exp (0.2231)). 

 

The analysis carried out in this study has highlighted some additional issues within the DEA 

context. First, if the correct returns-to-scale and variables are determined, the standard DEA LP’s 

never make type I error (cell (3) and lower bound of cell (1) in Table 2), however type II error 

can be quite substantial, particularly in the VRS case (cell (4) in Table 2). Since it is problematic 

in practice to determine the returns-to-scale characteristic of a production process for small 

samples (Read and Thanassoulis (2000)), it may be reasonable to always include the VRS 

constraint in a DEA when the number of observations is relatively large and inputs are highly 

correlated (as shown in Figures 2 and 3 and Table 2).  According to the Galagedera and 

Silvapulle (2003) study based on a large sample (200 DMU’s with 3 inputs and 1 output), the 

VRS specification proved to be a more accurate alternative if the DEA model does not include all 

relevant variables. Furthermore, when the DEA model includes irrelevant variables, they show 

that the true returns-to-scale assumption is crucial because of the severe over-estimation of 

efficiency scores. They also discuss the adverse impact of misspecification in DEA on individual 

DMU efficiency scores, which is more serious when salient variables are omitted as compared to 

the inclusion of irrelevant ones. Figure 4 shows that the omission of salient variables are 

undesirable and may cause substantial levels of type I error, but this is dependent on the relative 

importance of the variable omitted. If the weight on the variable is relatively high (x1), error type 

I is higher that that of the relatively less important variable omission (x4). Error type I is also 

relatively lower under variable returns-to-scale assumptions than constant returns. 

Table 2 here 
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Figure 5 compares the effect of omission versus the inclusion of an extraneous variable. With the 

latter, type II error is more likely. The inclusion of extraneous inputs influences the type II error 

of the basic weighted additive DEA dramatically, since it significantly complicates the process of 

defining inefficient DMU’s. According to previous studies (Smith (1997) and Galagedera and 

Silvapulle (2003)) and as demonstrated in this research through the observed trade-off tendency, 

it may be preferable to include an excessive number of variables in an analysis, when the correct 

determination of the truly efficient decision-making units is more important than the correct 

determination of the inefficient ones. Clearly, the omission of relevant variables leads to 

underestimation of the mean efficiency, while the inclusion of irrelevant variables leads to over-

estimation. 

 

4.3 Results Drawing on Data Generation Procedure II 

 

Figure 6, based on the second simulation undertaken (DGP II), again demonstrates the same 

tendencies as Figure 1 under substantially different assumptions. The difference between Figure 1 

and Figure 6 in the axes’ lengths is a direct result of the modifications in the experimental design 

including the computation of a single inefficiency distribution and the definition of a “nearly 

efficient” unit. The figure shows that PCA-DEA is strongly preferable to VR for all levels of 

information retained. PCA-DEA reduces type II error faster and creates type I error more slowly 

than the VR methodology. Furthermore, as the definition of a ‘nearly efficient’ unit becomes 

stricter (e-τ>0.9), with settings ranging from 0.9 in 0.03 steps up to 0.99, error type II increases 

quite understandably, as the number of potential relatively efficient units decreases. 

 

4.3.1 Confidence Intervals Estimation 

Figures 4 and 5 here 

Figure 6 here 
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Tables 3 and 4 present the results of Monte Carlo experiments to measure the performance of the 

dimension-reduction methods using radial DEA estimators for the randomly chosen fixed points 

according to data generating procedure II with varied inefficiency distributions, as presented in 

column (1) of each table. Each Monte Carlo experiment involved 100 trials and each trial 

evaluated 2000 bootstrap replications. Confidence intervals were estimated for a specific 

inefficient unit, the randomly chosen fixed point. The coverage of one-sided 97.5% estimated 

confidence intervals were used as performance criteria for basic radial, radial PCA-DEA and 

radial VR models (column (6)). Real bias and bootstrap bias estimates (columns (4) and (5)) were 

calculated as shown in Equations (8) and (9). Columns (8) and (9) give the ranges of the lower 

and the upper bounds for estimated 97.5 % one-sided confidence intervals over 100 trials. The 

last part of the model name (column (2)) refers to the minimum percentage of retained 

information in the data. Column 10 presents information as to how many PCs or variables were 

retained based on the rule of thumb. 

 

The results again indicate the greater accuracy of the PCA-DEA model over VR, in this case with 

respect to estimating the efficiency score11. As was expected, the bootstrap estimates of bias and 

the widths and ranges of the estimated confidence intervals decrease as sample size increases. 

The results are rather sensitive to the variance of the inefficiency term, for example the 

inefficiency distribution HN(0,1) produces especially wide ranges. It is also notable that the 

discrimination improving models reduce the level of bias that exists in the standard DEA. 

 

When various forms of misspecification were purposely introduced, namely one input was 

omitted from the model, an irrelevant input was incorporated into the model and the incorrect 

assumption as to the type of returns-to-scale was made, the performance criteria for radial CRS-

PCA and radial CRS-VR were quite similar. When VRS was assumed incorrectly, performance 

criteria indicated over-estimation for both radial VRS-PCA and radial VRS-VR models, and 

                                                 
11 An addition of noise in the experimental design will influence the efficiency estimator performance. Since both 
models are sensitive to measurement errors, the ‘no noise’ assumption is not crucial for the comparison between 
PCA-DEA and VR methods.  

Tables 3 and 4 here 
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estimation of the ‘true’, absolute efficiency score for small samples (10-20 observations) proved 

extremely problematic. Further examination of the accuracy of DEA and PCA-DEA for small 

samples would require the use of rank nonparametric statistics of relative efficiency instead of the 

absolute efficiency categorization. Such statistical tests are highly dependant on the proportion of 

tied observations and we cannot neglect this problem, therefore two types of errors were utilized 

in this study to act as universal performance criteria. 

 

5. Summary and Conclusions 

This research has compared two methodologies previously published in the literature, both of 

which have the stated aim of improving the discriminatory power of DEA without the need for 

additional preferential information. Problems related to discrimination usually arise when there 

are a relatively large number of variables as compared to decision-making units. In extreme 

cases, the majority of decision-making units may prove efficient, which means that subsequent 

analysis and ranking is problematic. Problems of discrimination have been reduced to two types; 

Error type I whereby efficient units are defined incorrectly as inefficient and Error type II 

whereby inefficient units are deemed efficient, a problem that appears particularly frequently 

when assuming variable returns-to-scale. This study used Monte-Carlo simulation to generalize 

the comparison between the two approaches, namely PCA-DEA and variable reduction (VR). 

The Monte Carlo simulation generated a large dataset, from which small subsets were drawn and 

the DEA efficiency classification was compared to the ‘true’ value, permitting a computation of 

the two error types. Furthermore, a bootstrapping approach in which the effects of the two 

approaches on the reduction of bias in the efficiency score estimates over the standard DEA 

linear programs was also presented. 

 

It was found that the PCA-DEA formulation provided consistently more accurate results that the 

VR technique. The results were such that PCA-DEA reduced type II error more quickly and 

produced type I error more slowly. The results proved robust to changes in the initial data 

distribution, production function, inefficiency distribution and model misspecification. This 

proved true under strongly different simulation assumptions, based on two schools of thought. 

The first school defined 25% of DMU’s as strictly efficient, whereas the second school assumes 
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all DMU’s to be inefficient to some extent, with no mass close to the frontier. The combination of 

VR and PCA-DEA methods (variable reduction followed by the application of principal 

components) proved unsuccessful due to an excessive loss of information.  

 

In this paper we have extended the work already published in the field by applying the PCA to all 

basic DEA models (previously it was applied to the additive model alone). In this context, we 

discuss the units and translation invariance properties of each of the LPs. Guidelines for the PCA-

DEA user were presented based on the concept of an ‘optimal index’ rule-of-thumb. The optimal 

index considered the trade-off between the two types of error, suggesting that the data may be 

reduced to a few uncorrelated principal components that describe at least 80 (76)% of the 

variance of the original data under constant (variable) returns-to-scale assumptions. This value is 

independent of the level of correlation between variables, of the distribution of inefficiencies or 

of the type of production function. It should be noted that in some cases, when the retained 

information lay below this guideline, the probability of both types of error increases. 

 

The analysis carried out in this study highlights some other issues within the DEA context. Since 

it is problematic to determine the returns-to-scale characteristic of a production process for 

relatively small samples in practice, it may be more reasonable to include a VRS constraint in a 

DEA particularly when the inputs are highly correlated. This choice, alongside the use of the 

PCA-DEA model, should result in reasonable levels of discrimination. With respect to the 

omission or addition of salient variables, according to previous studies (Smith (1997) and 

Galagedera and Silvapulle (2003)) and the observed trade-off tendency demonstrated in this 

research, it would appear to be preferable to include all potentially relevant variables for reasons 

of accuracy, particularly if determination of the relatively efficient decision-making units is more 

important than the correct determination of the inefficient ones e.g. for benchmarking purposes.  
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Figure 1: Error percentages of weighted additive DEA (100), PCA-DEA and VR models 

with simulated constant returns-to-scale Cobb-Douglas production functions and varying 

sample sizes (y = x1
0.25x2

0.25x3
0.25x4

0.25, relative low correlation between inputs, 

eff~exp(0.2231))   
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Figure 2: Error percentages of weighted additive DEA (100), PCA-DEA and VR models 

with simulated variable returns-to-scale Cobb-Douglas production functions and varying 

correlation in inputs (y = x1
0.35x2

0.2x3
0.1x4

0.05, sample size=8, eff~HN(0, 0.2796)) 
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Figure 3: Error percentages of weighted additive DEA, PCA-DEA and VR models with 

simulated translog production functions, varying sample size (relative high correlation 

between inputs, eff~exp(0.2231)) 
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Figure 4: Error percentages of weighted additive DEA, PCA-DEA and VR models with 

simulated constant returns-to-scale Cobb-Douglas production functions, varying input 

importance and the omission of one input (y = x1
0.45x2

0.3x3
0.15x4

0.1, relative high correlation 

between inputs, eff~exp(0.2231), sample size=8) 
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Figure 5: Error percentages of weighted additive DEA, PCA-DEA and VR models with 

simulated constant returns-to-scale Cobb-Douglas production functions, omission or 

inclusion of one input (y = x1
0.25x2

0.25x3
0.25x4

0.25, relative high correlation between inputs, 

eff~exp(0.2231), sample size=8) 
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 Figure 6: Error percentages of radial CRS DEA, PCA-DEA and VR models with simulated 

constant returns-to-scale Cobb-Douglas production functions and varying efficiency 

definition (y = x1
0.25x2

0.25x3
0.25x4

0.25, relative low correlation between inputs, eff~exp(0.2231) , 

sample size=16) 
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Table 1. Cobb-Douglas Production Functions 

Production function Returns-to-scale property 

y = x1
0.25 x2

0.25 x3
0.25 x4

0.25 

y = x1
0.45 x2

0.3 x3
0.15 x4
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=
m

1i
i 1α  

(Constant Returns to Scale) 
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Table 2. Original DEA and PCA-DEA error intervals according to the optimal index and 

DEA returns-to-scale assumptions 

 

Constant returns-to-scale Variable returns-to-scale All relevant inputs 

included in DEA 
Original DEA PCA-DEA Original DEA PCA-DEA 

Error type I 0-4.5 % (1) 6-11 % 0 % (3) 2-2.8 % 

Error type II 16-20 % (2)  5-7 % 43-45 % (4) 23-25 % 

Constant returns-to-scale Variable returns-to-scale Omission of one 

input 
Original DEA PCA-DEA Original DEA PCA-DEA 

Error type I 1-7 % 7.5-10 % 0.25-1.5 % 2.5-3.9 % 

Error type II 12-15 % 6-7 % 35-40 % 23-26 % 

Constant returns-to-scale Variable returns-to-scale Inclusion of one 

extraneous input 
Original DEA PCA-DEA Original DEA PCA-DEA 

Error type I 0-3.5 % 7.5-9.5 % 0 % 3-3.5 % 

Error type II 28-34 % 7-10 % 56-57 % 25–28 % 
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Table 3. Monte Carlo estimates of confidence intervals for radial CRS, radial CRS-PCA and radial CRS-VR 
estimators with simulated constant returns-to-scale Cobb-Douglas production functions and varying 
inefficiency distributions (relative low correlation between inputs) 

y = x1
0.45x2

0.3x3
0.15x4

0.1, sample size=10 

 
y = x1

0.25x2
0.25x3

0.25x4
0.25, sample size=20 

 
Table 4. Monte Carlo estimates of confidence intervals for reciprocal of output-oriented radial VRS, radial 
VRS-PCA and radial VRS-VR estimators with simulated variable returns-to-scale Cobb-Douglas production 
functions and varying inefficiency distributions (relative low correlation between inputs) 

y = x1
0.3x2

0.3x3
0.3x4

0.3, sample size=25 

m=4 m=3 m=2 m=1
(1) (2) (3) (4) (5) (6) (7)

Basic DEA 0.9065 0.0520 0.0402 0.84 0.0800 0.7582 0.9125 0.8694 0.9672 100
exp(0.2231) PCA_0.76 0.8917 0.0371 0.0395 0.92 0.0755 0.7585 0.9048 0.8604 0.9617 32 68

0.8546 VR_0.76 0.8936 0.0390 0.0416 0.87 0.0810 0.7091 0.9024 0.8259 0.9618 91 9
Basic DEA 0.9139 0.0378 0.0406 0.90 0.0809 0.7465 0.9102 0.8883 0.9655 100

HN(0,0.2796) PCA_0.76 0.8998 0.0238 0.0394 0.98 0.0758 0.7608 0.8890 0.8807 0.9449 32 68
0.8761 VR_0.76 0.8984 0.0223 0.0425 0.82 0.0830 0.7123 0.8913 0.8470 0.9597 91 9

Basic DEA 0.5957 0.0920 0.0869 0.90 0.1778 0.2831 0.5610 0.5263 0.7378 100
HN(0,1) PCA_0.76 0.5734 0.0660 0.0761 0.93 0.1546 0.2616 0.5900 0.5042 0.7324 32 68
0.5037 VR_0.76 0.5843 0.0806 0.0821 0.92 0.1669 0.2987 0.5742 0.5141 0.7378 91 9

Range of   
upper limits of 

estimated 
confidence 
intervals 

Number of trials when 
m inputs were 

included

(8) (9) (10)

Bootstrap 
bias 

estimates

Estimate of 
Confidence 

Interval 
Coverages

Average 
width of 

estimated 
confidence 
intervals

Range of   
lower limits of 

estimated 
confidence 
intervals 

Inefficiency 
distribution / 

True 
efficiency in 

the fixed 
point

DEA 
method

Average of 
relative 

efficiency 
estimators

Average 
of real 
bias

 


